
Efficient and Flexible Information Retrieval Using
MonetDB/X100

Sándor Héman, Marcin Zukowski, Arjen de Vries, Peter Boncz

CWI
Kruislaan 413

Amsterdam, The Netherlands
{Firstname.Lastname}@cwi.nl

ABSTRACT
Today’s large-scale IR systems are not implemented using
general-purpose database systems, as the latter tend to be
significantly less efficient than custom-built IR engines. This
paper demonstrates how recent developments in hardware-
conscious database architecture may however satisfy IR needs.
The advantage is flexibility of experimentation, as imple-
menting a retrieval system on top of a DBMS boils down
to relational query formulation, rather than system pro-
gramming. We demonstrate in the context of the TeraByte
TREC efficiency task that our experimental MonetDB/X100
database system provides highly competitive results both re-
garding precision and speed. We analyze the two innovations
in MonetDB/X100 that most contributed to this successful
application of DB technology in IR, namely vectorized in-
cache processing and the use of two new light-weight com-
pression schemes that work between the RAM and CPU
cache memory levels.

1. INTRODUCTION
Requirements of database management (DB) and informa-
tion retrieval (IR) systems overlap more and more. Database
systems are being applied to scenarios where features such as
text search and similarity scoring on multiple attributes be-
come crucial. Many information retrieval systems are being
extended beyond plain text, to rank semi-structured docu-
ments marked up in XML, or maintain ontologies or the-
sauri. In both areas, these new features are usually imple-
mented using specialized solutions limited in their features
and performance.

Full integration of DB and IR has been considered highly de-
sirable, see e.g. [5, 1] for some recent advocates. Yet, none
of the attempts into this direction has been very successful.
The explanation can be sought in what has been termed
the ‘structure chasm’ [11]: database research builds upon
the idea that all data should satisfy a pre-defined schema,

Proceedings of the Conference on Innovative Database Research January
2007,Asilomar, California, USA.

and the natural language text documents of concern to in-
formation retrieval do not match this database application
scenario. Still, the structure chasm does not explain why IR
systems do not use database technology to alleviate their
data management tasks during index construction and doc-
ument ranking. In practice however, custom-built infor-
mation retrieval engines have always outperformed generic
database technology, especially when also taking into ac-
count the trade-off between run-time performance and re-
sources needed.

The aim of proposed demonstration is twofold. First, the
demonstration shows the advantage, in terms of flexibility,
of using standard relational algebra to formulate IR retrieval
models. Secondly, it shows that, by employing a hardware-
conscious DBMS architecture, it is possible to achieve per-
formance, both in terms of efficiency and effectiveness, that
is competitive with leading, customized IR systems. The
demonstration takes place in the context of our experimental
MonetDB/X100 database system [3, 17], running a terabyte-
scale information retrieval task consisting of the TREC Ter-
aByte track (TREC-TB) [7]. Running TREC-TB on top of
a DBMS efficiently, is something that has never been demon-
strated to be realizable before, and could therefore be seen
as a step towards closing the gap between DBMS and IR
systems.

Section 2 describes the distinguishing features of MonetDB/
X100 that allow it to run large-scale data processing tasks
efficiently. Section 3 then explains the process of running
TREC-TB on top of a DBMS, followed by an overview of the
experiments we plan to demonstrate using MonetDB/X100
in Section 4.

2. MonetDB/X100 OVERVIEW
MonetDB/X100 is an experimental relational database ker-
nel, optimized for high performance on data- and query-
intensive workloads. It relies on the concept of vectorized in-
cache query execution to achieve good CPU utilization [3],
and a column-oriented storage manager that provides trans-
parent light-weight data compression [17] to improve I/O-
bandwidth utilization. An overview of the system architec-
ture is presented in Figure 1.

Figure 1 shows an operator tree, being evaluated within
MonetDB/X100 in a pipelined fashion, using the traditional
open(), next(), close() interface. However, each next() call

Decompression

Disk Disk

1.19

1998−09−03

CPU

the cache
vectors fit in

Cache

operators
process sets
of tuples
represented as
aligned vectors

vectors
contain multiple
values of a single
attribute

vectors at a time

primitives
process entire

Network
Storage

ColumnBM

Main
memory in DSM

data

selection
vector vat_price

Select

Project

selection
vector

shipdate returnflag extprice

hash table maintenance aggr_sum_flt_col

map_mul_flt_val_flt_col

map_hash_chr_col

returnflag sum_vat_price

Aggregate

Scan

select_lt_date_col_date_val

X100 execution engine

���
�

���
�

���
�

1 2 3 4

5 76

1 2 3

3

67

5

4

4

Figure 1: MonetDB/X100 architecture

within MonetDB/X100 does not return a single tuple, as is
the case in most traditional DBMSs, but a vector of tuples.
A vector is a unary array, containing a small slice of a single
column. Vectorization of the iterator pipeline allows Mon-
etDB/X100 primitives, which are responsible for computing
core functionality such as addition and multiplication, to be
implemented as simple loops over vectors. This results in
function call overheads being amortized over a full vector of
values instead of a single tuple, and allows the compiler to
produce data-parallel code that can be executed efficiently
on modern CPUs. Furthermore, the size of a vector is cho-
sen in such a way, that all vectors needed by a query fit the
CPU cache. This way, we avoid materialization of tuples
that are being passed from one operator to the next, mini-
mizing main memory access overheads. Such a vectorized in-
cache architecture allows MonetDB/X100 query evaluation
to be orders of magnitude faster than existing technology on
data- and query-intensive workloads.

The processing power of MonetDB/X100 can make the sys-
tem extremely I/O-hungry on certain queries. If the database
does not fit main memory, the only solution to this prob-
lem is to increase the available I/O bandwidth. This can
be done by adding more hardware, or by optimizing the
DBMSs buffer manager for bandwidth utilization. With re-
spect to the latter, MonetDB/X100 employs a buffer man-
ager, called ColumnBM, that relies on a column-oriented

header entry points

code section

exception section

3 1
4 1 5 2 6 5 3 5

7 3 2

989

5 0
1 3

98

Figure 2: Compressed
data layout (encod-
ing the digits of π:
31415926535897932).

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

 1

 2

 3

Br
an

ch
 m

iss
 ra

te
 (%

)

Ba
nd

wi
dt

h
(G

B/
s)

Exception rate

NAIVE BW
PFOR BW

NAIVE BMR
PFOR BMR

Figure 3: Branch Miss
Rate (BMR) and de-
compression bandwidth
versus exception rate

storage scheme, to avoid reading unnecessary columns from
disk. Further, the granularity of disk accesses is in blocks of
several megabytes, to optimize for fast sequential I/O.

2.1 RAM-CPU Cache Compression
In MonetDB/X100, we take the point of I/O-bandwidth uti-
lization even further, by integrating ultra light-weight RAM-
CPU cache compression into our system. The idea is, that
by reading compressed blocks from disk, we can increase
the perceived I/O bandwidth, as the actual data size of a
block after decompression is assumed to be larger than the
compressed block read from disk. For such an approach
to be applicable even in the context of RAID storage sys-
tems that are capable of delivering data at several hundreds
of megabytes per second, it should be clear that we need
decompression routines that are capable of producing un-
compressed data at speeds in the order several gigabytes
per second. To reach such speeds, we recently introduced
three novel compression algorithms, PFOR, PFOR-DELTA
and PDICT [17], that are designed to sacrifice some perfor-
mance in terms of compression ratio, in exchange for fast
decompressibility. Furthermore, these compression schemes
are integrated into the DBMS in such a way, that data blocks
are stored in compressed form in RAM, and data is only de-
compressed on-demand, at vector granularity, directly into
the CPU cache, where it is fed directly into the operator
pipeline, without writing the uncompressed data back to
main memory, as can be seen in Figure 1.

The two compression algorithms that are relevant for this
work are PFOR and PFOR-DELTA. These take the trend in
IR to move away from space-optimal compression towards
light-weight compression [16, 2] to the extreme. A crucial
difference is that our schemes are vectorizable, which means
that the operations for (de)compressing subsequent values
must be independent and expressible as a simple loop with-
out any if-then-else. Our new compression schemes store
input values as either coded or exception values. Coded
values are small integers, with bit-widths b that may vary
1 ≤ b ≤ 24. Exception values are stored in uncompressed
form, thus they should be infrequent in order to still achieve
a good compression ratio. In PFOR (Patched Frame-of-
Reference), the small integers are positive offsets from a base
value. Per disk block, one (possibly negative) base and one
bit-width b is used. PFOR-DELTA (PFOR on deltas) en-
codes the differences between subsequent values in a column
with PFOR.

In a compressed disk block (see Figure 2), the code section
is forward-growing and densely packed, while the exception
section grows backwards and stores uncompressed values.
An entry point section holds for every 128 values the off-
set to the next exception point in the code section, and the
corresponding location in the exception section. This allows
fine-granularity access and skipping, which is especially use-
ful during merging of inverted-lists.

The naive way to implement these simple schemes, is to use
a special code (MAXCODE) to mark exception positions:

for(i=j=0; i<n; i++) /* NAIVE approach to decompression */
if (code[i] < MAXCODE)

output[i] = DECODE(code[i]);
else

output[i] = exception[--j]);

In this pseudo code, we abstract from algorithmic differ-
ences using the following macros: (i) int ENCODE(ANY), that
transforms an input value into a small integer, and (ii) ANY

DECODE(int), that produces the encoded input value given a
small integer code.

The problem with this NAIVE approach is that it violates
our guideline to avoid if-then-else in the inner loop. This
hinders loop pipelining by the compiler, and also causes
branch mispredictions when the else-branch is taken. Fig-
ure 3 demonstrates how NAIVE decompression throughput
rapidly falls as the exception rate gets nearer to 50%. This
is due to branch mispredictions1 on the if-then-else test
for an exception, that becomes impossible to predict for the
CPU. To avoid this, we use the following “patch” approach
for decompression:

for(int i=j=0; i<n; i++) /* LOOP1: decode regardless */
output[i] = DECODE(code[i]);

for(int i=entry[0]; i<n; i+=code[i]) /* LOOP2: patch it up */
output[i] = exception[--j];

Decompression is now split in two tight loops without any
if-then-else statements, that all can be loop-pipelined by a
compiler. Looking at Figure 2, we can see the block contains
the integer sequence of π stored using PFORb=3 (base = 0).
The exception values (i.e. digits ≥ 8) use their code value
to store an offset to the next exception, forming a linked
list. LOOP1 simply decodes all values, which will generate
incorrect values for the exceptions. LOOP2 then patches
up the incorrect values by walking the linked exception list
and copying the exception values into the output array.

Figure 3 shows that the patched decompression variant clearly
outperforms the naive variant and achieves a bandwidth of
3.5 GB/s without exceptions (LOOP1 only). With increased
exception rate, patching work (LOOP2) increases linearly,
and bandwidth diminishes accordingly.

3. IR ON TOP OF MonetDB/X100
3.1 TREC-TB Setup
Lately, the Text REtrieval Conference (TREC) introduced
the “TeraByte Track” [7] as a large-scale text retrieval testbed.
1We collected IPC, cache misses, and branch misprediction
statistics using CPU event counters.

Table 1: Top results for TREC-TB 2005
Run p@20 CPUs Time per

query (ms)
MU05TBy3 0.5550 8 24
uwmtEwteD10 0.3900 2 27
MU05TBy1 0.5620 8 42
zetdist 0.5300 8 58
pisaEff4 0.3420 23 143

The TeraByte Track (TREC-TB) consists of the GOV2 doc-
ument collection, together with tasks to evaluate system
performance in terms of both effectiveness and efficiency.
The data set consists of 25 million web documents, crawled
from the .gov domain, with a total size of 426GB. Sys-
tem efficiency is measured by total execution time of 50,000
keyword-search queries. Effectiveness is evaluated by early
precision (p@20) on a subset of 50 preselected queries for
which relevance judgments are available. Table 1 shows the
performance of the leading systems on the 2005 TREC-TB
efficiency task.

We ran the 2005 TREC-TB on top of MonetDB/X100, us-
ing a single 3GHz Pentium Xeon CPU, 4GB of RAM, and
a software RAID system consisting of 12 disks. For the dis-
tributed experiments in Section 3.4, we used a LAN of 8 ma-
chines, equipped with dual-core, 2GHz Athlon64X2 CPUs
and 2GB RAM. To index the data, we used an inverted
list data-structure, represented by a relational table. This
[term,docid,tf] (TD) table, holds for each term, the ids of the
documents the term appears in (docid), and the number of
times the term occurs within a given document (tf). The ta-
ble is ordered on (term,docid), which allows the term column
to be replaced by a range index onto [docid,tf], and allows
the occurrence lists of two arbitrary terms to be combined
efficiently using merge-join. Additionally, per-document in-
formation is kept in a separate [docid, name, length] doc-
ument table D, with length being measured in number of
terms, and per-term global frequency counts (ftd) in table
T[term, ftd].

3.2 Keyword Search Using Relational Algebra
Keyword search in a DBMS boils down to retrieving all
the documents in which some or all of the query terms oc-
cur. Such a boolean retrieval approach can be formulated
in relational algebra as a series of join operations over in-
verted lists, with boolean AND and OR mapping to Join and
OuterJoin respectively. For example, a query “information
AND (storing OR retrieval)” can be translated to:

Join(
ScanSelect(TD1=TD, TD1.term="information"),
OuterJoin(

ScanSelect(TD2=TD, TD2.term="storing"),
ScanSelect(TD3=TD, TD3.term="retrieval")))

As the results for the runs BoolAND and BoolOR from
Table 2 show, simple boolean queries without ranking result
in very low precision. To address the low effectiveness, we
present results with the Okapi BM25 [14] retrieval model.

Table 2: MonetDB/X100 TREC-TB Experiments
Run name p@20 Avg.query Avg.query

(+ added feature) time (ms), time (ms),

cold data hot data

BoolAND 0.0130 76 12
BoolOR 0.0000 133 80
BM25 0.5460 440 342
BM25T (+Two-pass) 0.5470 198 72
BM25TC (+Compression) 0.5470 158 73
BM25TCM (+Materialization) 0.5470 155 29
BM25TCMQ8 (+Quant.8-bit) 0.5490 118 28

The document score of a given query is expressed as:

S
(D)
BM25 =

|Q|X
i=1

ωD,Ti (1)

ωD,T = log(
fD

fT,D
) · (k1 + 1) · fD,T

fD,T + k1 · ((1 − b) + b · |D|
avgdl

)
(2)

Given a query with |Q| terms, the score of each document

S
(D)
BM25 is a sum of scores of each query term for this docu-

ment ωD,T . The per-term document scores ωD,T are com-
puted as a function of the total number of documents (fD),
the number of documents containing term T (fT,D), the fre-
quency of T within D (fD,T), the document length (|D|),
and the average document length (avgdl) over the whole
collection. Variables k1 and b represent two predefined con-
stants. A relational query that finds the top 20 documents
using this formula for a 2-term query could look like:

TopN(
Project(

Join(
OuterJoin(

ScanSelect(TD1=TD, TD1.term=t1_term),
ScanSelect(TD2=TD, TD2.term=t2_term),
TD1.docid=TD2.docid),

Scan(D),
D.docid=MAX(TD1.docid,TD2.docid))

[D.docname, score=BM25(TD1.tf,D.doclen,t1_ftd)
+BM25(TD2.tf,D.doclen,t2_ftd)]),

[score DESC], 20)

where score=BM25(TD2.tf,D.doclen,t2 ftd) is used as a
shorthand, the real query contains the full BM25 formula.

Running above BM25 query requires a significant amount of
processing time, as run BM25 in Table 2 illustrates. This is
not strange, however, considering that the average length of
the 50.000 TREC-TB queries is 2.3 terms, with each term
occurring in 775 thousand documents on average. There
is, however, still room for improvement in terms of average
query execution time.

3.3 Performance Optimizations
In this section we show a set of representative IR optimiza-
tion techniques that allowed MonetDB/X100 to be compet-
itive with the leading TREC participants.

First of all, The BM25 retrieval model scores each document,
regardless the number of matching query terms. Given the
observation that we are only interested in the top-N most

relevant documents, we can refrain from computing the score
for documents that are highly unlikely to make it into the
top-N. Relying on a heuristic that documents that contain
more query terms are likely to obtain a better score, we
can obtain a significant performance improvement by fol-
lowing a two-pass strategy. In the first pass, we retrieve
only the documents that contain all query terms, using a
conventional MergeJoin instead of a MergeOuterJoin. Only
if the first pass does not return enough results, we execute a
second pass using the less restrictive MergeOuterJoin. Run
BM25T in table 2 illustrates the performance gain, where
roughly 15% of the 50.000 queries required a second pass.

Second, a large part of the cost of processing inverted lists is
related to reading these from disk. Most IR systems use data
compression to reduce this time. Using MonetDB/X100’s
built in compression, we were able to reduce the sizes of
the docid and tf columns, which constitute the major part
of total I/O, from 32 to 11.98 and 8.13 bits per tuple, re-
spectively. To compress the partially ordered docid column,
we used PFOR-DELTA compression with a codeword size
of 8 bits. For the small integer tf values, we used PFOR,
also with an 8-bit codeword size. The BM25TC run in
Table 2 shows that this significantly improves the cold run,
where all data needs to be read from disk. The time of
the hot run did not change significantly, thanks to the high
performance of the decompression routines implemented in
MonetDB/X100.

The BM25 retrieval model aggregates the ωD,T scores, which
are query independent (see Eq. 1 and 2). Once its tuning
parameters k1 and b have been fixed, ωD,T values may be
precomputed, and can be stored as a separate score column
in the TD table. This score materialization not only
saves the cost of computing the per-term document score, it
additionally allows us to perform a join with the document
table only for the top-n documents, since the per-document
properties are not needed for score computation anymore,
only to retrieve the names of the top-ranked documents. As
the results of the BM25TCM run show, this reduces the
in-memory processing time significantly. However, the cold
run did not improve, since the I/O overhead increased, as
we now read 32-bit floating point ωD,T values instead of
compressed 8.13-bit term frequencies fD,T . We were able to
quantize the range of floating point scores into 8-bit integer
numbers, without loss of precision, using the following linear
Global-By-Value quantization

ω
′
D,T =

—
q · ωD,T − L

U − L + ε

�
+ 1,

where L and U are the minimum and maximum values of
ωD,T in the entire collection. This produces integer values
between 1 and q. We used a value of q = 256, significantly re-
ducing the data size, and therefore the amount of I/O, which
resulted in the performance results labeled BM25TCMQ8.

3.4 Distributed Execution
Text retrieval lends itself well for distributed execution, as
we can easily split up the document collection into N par-
titions, and let each partition be indexed by its own server
node. An incoming query can then be broadcast to all in-
dexing nodes, with each of them returning its local top-N
documents for that query. These per-node results can then

Table 3: Performance of the distributed runs
Average Average per-query

query time server response time
(ms) (ms)

absolute amortized min average max

Full TREC-TB run (hot data)
Sequential 23.1
8 servers 11.26 5.50 6.39 11.00

Using less servers (1 stream, fixed partition size)
4 servers 9.21 5.92 6.78 9.06
2 servers 7.30 6.46 6.83 7.20
1 server 7.41 7.34 7.34 7.34

Increasing the concurrency (8 servers)
1 stream 11.24 11.26 5.50 6.39 11.00
2 streams 9.61 4.86 5.56 6.92 9.36
4 streams 14.30 3.64 5.81 8.56 13.99
8 streams 25.46 3.26 6.21 12.28 25.07

be merged into a global top-N to produce the final result.

To investigate the scalability of our system, we ran dis-
tributed experiments on our LAN, using 8 partitions, each
indexed by a separate machine. Thanks to MonetDB/X100’s
data compression, the whole index (10GB), could be kept in
RAM, so that I/O is eliminated as a performance factor.

However, as the results in 3 show, the speedup using 8 ma-
chines is far from perfect (it decreases from 23.1 only to
11.26 msec). The main cause for the non-linear speedup is
load imbalance, as is shown in the right half of Table 3: with
increased number of database servers, the average per-server
running times start to vary significantly. With 8 servers, the
slowest one (which determines the overall query latency)
takes twice as long as the fastest (11 vs. 5.5 msec). In a
real IR system, however, such load imbalance affects latency
but not throughput, as the system will be handling multi-
ple queries continuously and differences even out. This is
currently modeled in the TREC terabyte efficiency track by
submitting a limited number of concurrent query “streams”
to the system. The lower part of Table 3 shows that with an
increased amount of concurrency, latency deteriorates much
less than linear (i.e. throughput improves). As a result,
throughput does scale linearly, as 8 servers are able to pro-
cess more than 300 queries per second, taking an amortized
3.26 msec per query only (vs. 23 msec for one server).

4. TO BE DEMONSTRATED
We propose to demonstrate our system from two different
angles: basic search and performance.

basic search Provides the user with a google-like search in-
terface to enter keyword queries and browse the ranked
result documents, which are stored in the DBMS as
well. The user is allowed to select the search strategy
and optimizations to be used during the search. To get
a deeper understanding of what is going on in the sys-
tem, given the chosen search strategy, alongside with
the query results, we display the relational query plan
that was executed, annotated with profiling informa-
tion.

performance To demonstrate the raw performance of the
system, we evaluate batches of official TREC-TB queries
under any of the settings presented in Table 2. For
distributed runs, we analyze performance as a func-
tion of the number of nodes (keeping data sizes fixed)
and the number of simultaneous query input streams.
We present run-time statistics, such as average query
latency over nodes, best node latency, worst node la-
tency, CPU utilization, average query length, average
data volume processed per query, by sampling system
state at regular intervals and displaying the statistics
to the user in a graphical interface. To demonstrate
the impact of MonetDB/X100 design decisions on per-
formance, we also run benchmarks using varying Mon-
etDB/X100 parameters, such as the vector size used in
the execution pipeline.

5. RELATED WORK
Integration of the DB and IR processing has recently been
discussed in [5]. The authors present a set of motivating
examples, discuss different approaches of combining area-
specific processing techniques, and propose an extension to
the relational algebra that provides various IR features, e.g.
a top-k operator. They also discuss the new challenges this
algebra brings for the relational query optimizers.

A good summary of the DB-community view on integration
with IR technology was presented during the recent SIG-
MOD panel [1]. While most researchers discuss DB and
IR integration within a DBMS, our approach is to rather
provide IR applications with features necessary for the ef-
ficient execution of their tasks. In this sense it is simi-
lar to [10], where the authors store inverted lists in a Mi-
crosoft SQLServer and use SQL queries for keyword search.
Similarly, in [9] the data is distributed over a PC cluster,
and an analysis of the impact of concurrent updates is pro-
vided. Our approach extends this previous work, by show-
ing how a much wider series of IR optimization techniques
can be translated to database queries. These techniques and
their effectiveness/performance trade-off are further demon-
strated on a much larger collection (500GB TeraByte TREC
vs. 500MB in [9]) and show significantly faster retrieval
performance.

In the TREC benchmark there were a few attempts to use
database technology, e.g. [12]. However, most of these sys-
tems used a DBMS for effectiveness tasks only, where the
system efficiency was not an issue. Only one TeraByte
TREC submission used a system built on top of the MySQL
DBMS [6], but its precision and speed (5 sec per query) were
disappointing compared to other participants.

There still is a large group of IR efficiency optimization tech-
niques not discussed in this paper. For example, Buckley [4]
presented an optimization technique in which, during term-
at-a-time top-r search, execution stops when the score differ-
ence of the r-th and r+1-th document is larger than the sum
of the maximum scores of the remaining attributes. Another
pruning approach is the well-known Fagin algorithm [8], re-
cently extended with probabilistic pruning [15]. The final
interesting group of optimizations exploit word positions for
improved retrieval effectiveness (e.g. [13]). We believe all
these methods can be implemented on top of a DBMS using

techniques similar to the ones presented in this paper.

6. CONCLUSION
In our demonstration, we will show that it is possible to
run terabyte scale information retrieval tasks on top of a
relational database engine. Besides, it will be demonstrated
that we can easily implement several standard IR optimiza-
tion techniques, and that these techniques allow us to rival
customized IR systems in terms of performance. This work
presents a step towards the integration of DB and IR sys-
tems, with some of the key ingredients needed to achieve
this result being: MonetDB/X100’s raw speed, light-weight
data compression, and distributed execution.

7. REFERENCES
[1] S. Amer-Yahia. Report on the DB/IR Panel at

Sigmod 2005. SIGMOD Record, 34(4):71–74, 2005.

[2] V. N. Anh and A. Moffat. Inverted index compression
using word-aligned binary codes. Information
Retrieval, 8(1):151–166, 2005.

[3] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In Proceedings of
the Conference of Innovative Database Research
(CIDR), pages 225–237, Asilomar, CA, USA, 2005.

[4] C. Buckley and A. F. Lewit. Optimization of inverted
vector searches. In Proceedings of the International
Conference on Information Retrieval (ACM SIGIR),
pages 97–110, Montreal, Canada, 1985.

[5] S. Chaudhuri, R. Ramakrishnan, and G. Weikum.
Integrating DB and IR Technologies: What is the
Sound of One Hand Clapping? In Proceedings of the
Conference of Innovative Database Research (CIDR),
pages 1–12, Asilomar, CA, USA, 2005.

[6] C. L. A. Clarke, N. Craswell, and I. Soboroff.
Overview of the TREC 2004 Terabyte Track. In
Proceedings of the Text Retrieval Conference (TREC),
Gaithersburg, MD, USA, 2004.

[7] C. L. A. Clarke, F. Scholer, and I. Soboroff. The
TREC 2005 Terabyte Track. In Proceedings of the
Text Retrieval Conference (TREC), Gaithersburg,
MD, USA, 2005.

[8] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. pages 102–113,
2001.

[9] T. Grabs, K. Bhoem, and H.-J. Schek. PowerDB-IR:
scalable information retrieval and storage with a
cluster of databases. Knowledge and Information
Systems, 6(4):465–505, 2004.

[10] D. A. Grossman, O. Frieder, D. O. Holmes, and D. C.
Roberts. Integrating structured data and text: A
relational approach. JASIS, 48(2):122–132, 1997.

[11] A. Y. Halevy, O. Etzioni, A. Doan, Z. G. Ives,
J. Madhavan, L. McDowell, and I. Tatarinov. Crossing
the structure chasm. In Proceedings of the Conference
of Innovative Database Research (CIDR), 2003.

[12] K. Mahesh, J. Kud, and P. Dixen. Oracle at TREC 8:
a lexical approach. In Proceedings of the Text Retrieval
Conference (TREC), Gaithersburg, MD, USA, 1999.

[13] D. Metzler and W. B. Croft. A markov random field
model for term dependencies. In Proceedings of the
International Conference on Information Retrieval
(ACM SIGIR), pages 472–479, Salvador, Brazil, 2005.

[14] S. E. Robertson, S. Walker, and M. Beaulieu. Okapi at
TREC-7: automatic ad hoc, filtering, VLC and
interactive track. In Proceedings of the Text Retrieval
Conference (TREC), pages 143–167, Gaithersburg,
MD, USA, 1998.

[15] M. Theobald, G. Weikum, and R. Schenkel. Top-k
query evaluation with probabilistic guarantees. In
Proceedings of the International Conference on Very
Large Databases (VLDB), pages 648–659, Toronto,
Canada, 2004.

[16] A. Trotman. Compressing inverted files. Inf. Retr.,
6(1):5–19, 2003.

[17] M. Zukowski, S. Héman, N. Nes, and P. Boncz.
Super-Scalar RAM-CPU Cache Compression. In
Proceedings of the International Conference of Data
Engineering (IEEE ICDE), Atlanta, GA, USA, 2006.

